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AMQ Streams on
OpenShift Container Platform
• Enterprise distribution of Apache Kafka
• Simplified deployment on OpenShift
• Based on OSS project called Strimzi
• Provides:

• Container images for running Apache 
Kafka and Zookeeper

• Operators for managing and configuring 
Apache Kafka clusters, topics and users



What is Apache Kafka?

A publish/subscribe messaging system?

A streaming data platform?

A distributed, horizontally-scalable, fault-tolerant, commit log?
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Apache Kafka

Concepts

• Messages are sent to and received from a topic
• Topics are split into one or more partitions (aka shards)
• All actual work is done on partition level, topic is just a virtual object

• Each message is written only into a one selected partition
• Partitioning is usually done based on the message key
• Message ordering within the partition is fixed

• Retention
• Based on size / message age
• Compacted based on message key
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Apache Kafka concepts
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Apache Kafka concepts

Topics & partitions
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Apache Kafka concepts

High availability
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Leaders and followers spread across the cluster
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Apache Kafka concepts

High availability
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If a broker with leader partition goes down, a new leader partition is elected on different node

#RedHatOSD



Apache Kafka concepts

Reading and writing to leaders
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Apache Kafka concepts

Consumer Groups: partitions assignment
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Apache Kafka concepts

Consumer Groups: rebalancing
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Apache Kafka concepts

Consumer Groups: max parallelism & idle consumer
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AMQ Broker & AMQ Streams

Key differences
AMQ Broker (ActiveMQ Artemis) AMQ Streams (Kafka)

Model “Smart broker, dumb clients” “Dumb broker, smart clients”

Durability Volatile or durable storage Durable storage

Storage duration Temporary storage of messages Potential long-term storage of messages

Message retention Retained until consumed Retained until expired or compacted

Consumer state Broker managed Client managed (can be stored in broker)

Selectors Yes, per consumer No

Stream replay No Yes

High-availability Replication Replication

Protocols AMQP, MQTT, OpenWire, Core, STOMP Kafka protocol

Delivery guarantees Best-effort or guaranteed Best-effort or guaranteed
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● Apache Kafka is *stateful* which means we require … 
○ … a stable broker identity
○ … a way for the brokers to discover each other on the 

network
○ … durable broker state (i.e., the messages)
○ … the ability to recover broker state after a failure

● All the above are true for Apache Zookeeper as well
● StatefulSets, PersistentVolumeClaims, Services can help but … 
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AMQ Streams on OCP

The challenges



It’s not easy!
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● Simplifying the Apache Kafka deployment on OpenShift
● Using the OpenShift native mechanisms for...

○ Provisioning the cluster
○ Managing the topics and users

● … thereby removing the need to use Kafka command-line tools
● Providing a better integration with applications running on 

OpenShift
○ microservices, data streaming, event-sourcing, etc.
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AMQ Streams on OCP

Goals



● An application used to create, configure and manage other 
complex applications
○ Contains specific domain / application knowledge

● Operator works based on input from Config Maps or 
Custom Resource Definitions
○ User describes the desired state
○ Controller applies this state to the application

● It watches the *desired* state and the *actual* state … 
○ … taking appropriate actions

Observe

Analyze

Act
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The “Operator” model



AMQ Streams on OCP

The Operators

Cluster 
Operator

Kafka CR
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● Responsible for managing clusters
○ Kafka brokers (including Zookeeper)
○ Kafka Connect clusters
○ Kafka Mirror Maker

● Responsible for
○ Deployment
○ Scale-up / Scale-down
○ Re-configuration 
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AMQ Streams on OCP

Cluster Operator



● Responsible for managing Kafka topics
○ You can create, update and delete topics “the Kubernetes way”
○ No need to know Kafka commands
○ Applications can still create topics directly in Kafka

■ Topic operator synchronizes the topics bi-directionally
■ For topics created in Kafka, it will create Custom Resources
■ In case of conflicts, it will use 3-way-diff to resolve them

#RedHatOSD

AMQ Streams on OCP
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● Responsible for managing users
○ Allows to create, update and delete users
○ Currently two supported authentication mechanisms

■ TLS client certificates
■ SASL SCRAM-SHA-512 (username and password based 

authentication)
○ Authorization manages using Kafka ACL plugin

■ Allowed / Denied operations can be defined together with the user
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AMQ Streams on OCP

User Operator
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Main features



AMQ Streams on OCP

Operator

● OCP 3.11 provides a few 
operators
○ Prometheus, etcd, ...

● AMQ Streams 1.0 available



AMQ Streams on 
OpenShift Container 

Platform is GA!
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DEMO TIME
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Resources

● AMQ Streams : https://access.redhat.com/products/red-hat-amq-streams
● Strimzi : http://strimzi.io/ - @strimziio
● Apache Kafka : https://kafka.apache.org/
● Demo : https://github.com/ppatierno/rh-osd-2018



GRAZIE PER L’ATTENZIONE
Paolo Patierno
Principal Software Engineer @ Red Hat
@ppatierno
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