
Kafka on OpenShift : make it easy 
with AMQ Streams
Event Streaming and reactive architectures

#RedHatOSD

Paolo Patierno
Principal Software Engineer @ Red Hat
@ppatierno



#RedHatOSD

MessagingMessaging ≠ ≠ Messaging

Low-latency 
pub/sub Cross-cloud 

backbone

Temporal 
decoupling

Load 
levelling

Load 
balancing

Enterprise 
application 
integration

IoT device 
connectivity

Message-
driven beans

Event-driven 
microservice

s

Long-term 
message 
storage

Replayable 
streams

Event 
sourcing

Geo-aware 
routing

Database 
change data 

capture



AMQ Streams on
OpenShift Container Platform
• Enterprise distribution of Apache Kafka
• Simplified deployment on OpenShift
• Based on OSS project called Strimzi
• Provides:

• Container images for running Apache 
Kafka and Zookeeper

• Operators for managing and configuring 
Apache Kafka clusters, topics and users



What is Apache Kafka?

A publish/subscribe messaging system?

A streaming data platform?

A distributed, horizontally-scalable, fault-tolerant, commit log?

#RedHatOSD



Apache Kafka

Concepts

• Messages are sent to and received from a topic
• Topics are split into one or more partitions (aka shards)
• All actual work is done on partition level, topic is just a virtual object

• Each message is written only into a one selected partition
• Partitioning is usually done based on the message key
• Message ordering within the partition is fixed

• Retention
• Based on size / message age
• Compacted based on message key

#RedHatOSD



Apache Kafka concepts

Topics & partitions

old new

0 1 2 3 4 5 6 7 8 9 1
0

1
1

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 1
0

Producer

Partition 0

Partition 1

Partition 2

#RedHatOSD



Apache Kafka concepts

Topics & partitions

old new

0 1 2 3 4 5 6 7 8 9 1
0

1
1

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 1
0

Consumer

Partition 0

Partition 1

Partition 2

#RedHatOSD



Apache Kafka concepts

High availability

Broker 1

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 2

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 3

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Leaders and followers spread across the cluster

#RedHatOSD



Apache Kafka concepts

High availability

Broker 1

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 2

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 3

T1 - P1

T1 - P2

T2 - P1

T2 - P2

If a broker with leader partition goes down, a new leader partition is elected on different node

#RedHatOSD



Apache Kafka concepts

Reading and writing to leaders

Broker 1

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 2

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 3

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Producer P2 Consumer C3

Consumer C1

Producer P1

Consumer C2

#RedHatOSD



Apache Kafka concepts

Consumer Groups: partitions assignment

Topic

Partition 0

Partition 1

Partition 2

Partition 3

Group 1
Consume

r
Consume

r

Group 2
Consume

r
Consume

r
Consume

r



Apache Kafka concepts

Consumer Groups: rebalancing

Topic

Partition 0

Partition 1

Partition 2

Partition 3

Group 1
Consume

r
Consume

r

Group 2
Consume

r
Consume

r
Consume

r



Apache Kafka concepts

Consumer Groups: max parallelism & idle consumer

Topic

Partition 0

Partition 1

Partition 2

Partition 3

Group 1
Consume

r
Consume

r
Consume

r
Consume

r
Consume

r



AMQ Broker & AMQ Streams

Key differences
AMQ Broker (ActiveMQ Artemis) AMQ Streams (Kafka)

Model “Smart broker, dumb clients” “Dumb broker, smart clients”

Durability Volatile or durable storage Durable storage

Storage duration Temporary storage of messages Potential long-term storage of messages

Message retention Retained until consumed Retained until expired or compacted

Consumer state Broker managed Client managed (can be stored in broker)

Selectors Yes, per consumer No

Stream replay No Yes

High-availability Replication Replication

Protocols AMQP, MQTT, OpenWire, Core, STOMP Kafka protocol

Delivery guarantees Best-effort or guaranteed Best-effort or guaranteed

#RedHatOSD



● Apache Kafka is *stateful* which means we require … 
○ … a stable broker identity
○ … a way for the brokers to discover each other on the 

network
○ … durable broker state (i.e., the messages)
○ … the ability to recover broker state after a failure

● All the above are true for Apache Zookeeper as well
● StatefulSets, PersistentVolumeClaims, Services can help but … 

#RedHatOSD

AMQ Streams on OCP

The challenges



It’s not easy!

#RedHatOSD



● Simplifying the Apache Kafka deployment on OpenShift
● Using the OpenShift native mechanisms for...

○ Provisioning the cluster
○ Managing the topics and users

● … thereby removing the need to use Kafka command-line tools
● Providing a better integration with applications running on 

OpenShift
○ microservices, data streaming, event-sourcing, etc.

#RedHatOSD

AMQ Streams on OCP

Goals



● An application used to create, configure and manage other 
complex applications
○ Contains specific domain / application knowledge

● Operator works based on input from Config Maps or 
Custom Resource Definitions
○ User describes the desired state
○ Controller applies this state to the application

● It watches the *desired* state and the *actual* state … 
○ … taking appropriate actions

Observe

Analyze

Act

#RedHatOSD

AMQ Streams on OCP

The “Operator” model



AMQ Streams on OCP

The Operators

Cluster 
Operator

Kafka CR

#RedHatOSD

Topic 
Operator

Topic CR

User 
Operator

User CR

Kafka

Zookeeper 

Deploys & manages 
cluster

Manages 
topics & users



● Responsible for managing clusters
○ Kafka brokers (including Zookeeper)
○ Kafka Connect clusters
○ Kafka Mirror Maker

● Responsible for
○ Deployment
○ Scale-up / Scale-down
○ Re-configuration 

#RedHatOSD

AMQ Streams on OCP

Cluster Operator



● Responsible for managing Kafka topics
○ You can create, update and delete topics “the Kubernetes way”
○ No need to know Kafka commands
○ Applications can still create topics directly in Kafka

■ Topic operator synchronizes the topics bi-directionally
■ For topics created in Kafka, it will create Custom Resources
■ In case of conflicts, it will use 3-way-diff to resolve them

#RedHatOSD

AMQ Streams on OCP

Topic Operator



● Responsible for managing users
○ Allows to create, update and delete users
○ Currently two supported authentication mechanisms

■ TLS client certificates
■ SASL SCRAM-SHA-512 (username and password based 

authentication)
○ Authorization manages using Kafka ACL plugin

■ Allowed / Denied operations can be defined together with the user

#RedHatOSD

AMQ Streams on OCP

User Operator



#RedHatOSD

Tolerations
Memory and CPU 

resources

High 
Availability

Mirroring

AffinityAuthentication
Storage

Encryption

Scale 
DownJVM 

Configuration
LoggingMetrics

Access from 
outside

Scale Up
Authorization

Healthchecks
Source2Image Configuration

AMQ Streams on OCP

Main features



AMQ Streams on OCP

Operator

● OCP 3.11 provides a few 
operators
○ Prometheus, etcd, ...

● AMQ Streams 1.0 available



AMQ Streams on 
OpenShift Container 

Platform is GA!

#RedHatOSD



DEMO TIME



#RedHatOSD



Resources

● AMQ Streams : https://access.redhat.com/products/red-hat-amq-streams
● Strimzi : http://strimzi.io/ - @strimziio
● Apache Kafka : https://kafka.apache.org/
● Demo : https://github.com/ppatierno/rh-osd-2018



GRAZIE PER L’ATTENZIONE
Paolo Patierno
Principal Software Engineer @ Red Hat
@ppatierno

#RedHatOSD


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

